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Figure 1: Model evolution of fitting a procedural geometric modelM8 to a point cloud Q11 (green) (Section 6.4). From left to right: fitted
models at different iterations (time in seconds): 0 (0), 683 (979.4786), 1782 (2458.3916), 5566 (5968.5444), 16666 (11487.1016) and 43299
(23074.8750), respectively.

Abstract

Geometric model fitting is a fundamental task in computer graphics
and computer vision. However, most geometric model fitting meth-
ods are unable to fit an arbitrary geometric model (e.g. a surface
with holes) to incomplete data, due to that the similarity metrics
used in these methods are unable to measure the rigid partial simi-
larity between arbitrary models. This paper hence proposes a novel
rigid geometric similarity metric, which is able to measure both the
full similarity and the partial similarity between arbitrary geometric
models. The proposed metric enables us to perform partial proce-
dural geometric model fitting (PPGMF).

The task of PPGMF is to search a procedural geometric model
space for the model rigidly similar to a query of non-complete point
set. Models in the procedural model space are generated according
to a set of parametric modeling rules. A typical query is a point
cloud. PPGMF is very useful as it can be used to fit arbitrary
geometric models to non-complete (incomplete, over-complete or
hybrid-complete) point cloud data. For example, most laser scan-
ning data is non-complete due to occlusion. Our PPGMF method
uses Markov chain Monte Carlo technique to optimize the proposed
similarity metric over the model space. To accelerate the opti-
mization process, the method also employs a novel coarse-to-fine
model dividing strategy to reject dissimilar models in advance. Our
method has been demonstrated on a variety of geometric models
and non-complete data. Experimental results show that the PPGMF
method based on the proposed metric is able to fit non-complete
data, while the method based on other metrics is unable. It is also
shown that our method can be accelerated by several times via early
rejection.
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1 Introduction

A geometric model is a continuous point set (e.g. a surface). A
geometric model space is a set of geometric models. A procedu-
ral model space is defined by a set of parametric modeling rules
[Dang et al. 2015]. Retrieving desired model from procedural space
is called inverse procedural modeling (IPM). As an important but
challenging problem in computer graphics and computer vision,
IPM has been actively studied in recent years [Musialski et al.
2013]. PPGMF is a special case of IPM, as it searches a proce-
dural geometric model space for the model which is rigidly similar
to a query of non-complete point set. PPGMF can be used in a num-
ber of applications including pattern recognition, shape matching,
geometric modeling and point cloud reconstruction.

The task of basic geometric model fitting (BGMF) is to rigidly fit
basic geometric models to the input geometric data (i.e. a point
set). The most famous BGMF method is RANSAC [Fischler and
Bolles 1981], which can be used to fit several basic geometric mod-
els such as planes and spheres. Following RANSAC, a lot of BGMF
methods have been proposed [Isack and Boykov 2011]. However,
BGMF methods cannot be used to fit arbitrary models. To fit arbi-
trary models, the rigid geometric similarity between arbitrary mod-
els has to be calculated. A rigid geometric similarity metric should
ensure that a model is most similar to itself than any other mod-
els. To the best of our knowledge, symmetric Hausdorff distance
(SHD) is the only rigid geometric similarity metric. However, it
is time consuming to calculate SHD, making it difficult to perform
arbitrary model fitting. This paper hence proposes a novel efficient
rigid geometric similarity metric to perform arbitrary model fitting.

Given the similarity metric, the remaining task of arbitrary model
fitting is to optimize over a given arbitrary model space. An ar-
bitrary model space is usually defined by a procedural modeling

ar
X

iv
:1

61
0.

04
93

6v
1 

 [
cs

.G
R

] 
 1

7 
O

ct
 2

01
6



approach. That is, a set of procedural modeling rules are used to
generate models [Smelik et al. 2014]. Retrieving desired models
from procedural model space is called IPM. Many IPM methods
have been proposed using different retrieval criteria such as indica-
tor satisfying [Vanegas et al. 2012b] and image resembling [Teboul
et al. 2013] [Lake et al. 2015]. In this paper, we focus on geo-
metric criterion based IPM (GIPM) methods, which aim at fitting
procedural geometric models to the input geometric data. As one
geometric criterion, voxel difference (VD) has been investigated in
GIPM methods [Talton et al. 2011] [Ritchie et al. 2015]. However,
VD is an approximate geometric similarity criterion. It is obvious
that part information is lost by voxelization, as the voxelization res-
olution cannot be as small as 0. Theoretically, our metric does not
rely on a resolution. In other words, VD-based GIPM method can-
not be used for rigid model fitting, which requires the calculation
of rigid geometric similarity. To the best of our knowledge, our
PPGMF method is the first GIPM method which can be used for
arbitrary rigid model fitting.

PPGMF aims at rigidly fitting procedural geometric models to
a query of non-complete (incomplete, over-complete or hybrid-
complete) geometric object. “Hybrid-complete” means hybrid in-
complete and over-complete. Typical queries are point clouds.
There are two key processes in a PPGMF method. The first key pro-
cess is to calculate the rigid geometric similarity between a model
and the query. We have found that a SHD or VD based method
is unable to fit non-complete point clouds. We hence propose a
novel partial rigid geometric similarity metric to fit non-complete
data. The second key process is to optimize over the procedural
model space. Optimizing over the procedural space is challeng-
ing due to the hierarchical and recursive nature of modeling rules.
Markov chain Monte Carlo (MCMC) technique is used to perform
optimization. Although the similarity calculation based on our met-
ric is faster than SHD, it is still too slow for practical applications.
We hence propose a novel coarse-to-fine model dividing strategy to
reject dissimilar models in advance to accelerate this optimization.

PPGMF is of important significance, and is very useful as it can be
used to fit arbitrary geometric models to non-complete data. For ex-
ample, most laser scanning data is non-complete (cluttered) due to
occlusion [Guo et al. 2014]. We have tested our metric and PPGMF
method on a variety of geometric models and non-complete data.
Experimental results show that the PPGMF method based on the
proposed metric is able to fit non-complete data, while the SHD or
VD based method fails. Experimental results also show that our
method can be accelerated by several times using early rejection.

In summary, our contributions are: (1) A novel rigid geometric sim-
ilarity metric is proposed to measure the similarity between two ge-
ometric models. (2) An effective method is proposed to rigidly fit
arbitrary geometric models to non-complete data. (3) A coarse-to-
fine geometric model dividing strategy is proposed to reject dissim-
ilar models in advance for the acceleration of PPGMF.

The rest of this paper is organized as follows. Sections 2 and 3
present related work and the overview of our method, respectively.
Section 4 introduces our rigid geometric similarity metric. Sec-
tion 5 presents the MCMC-based optimization approach and our
coarse-to-fine model dividing strategy. Sections 6 and 7 present
experimental results and conclusion, respectively.

2 Related Work

Most GIPM methods take either a particular type of geometric
model or geometric data as input. BGMF methods such as [Fis-
chler and Bolles 1981] [Isack and Boykov 2011] work on basic
geometric models. [Debevec et al. 1996] [Mathias et al. 2011] rely
on image information to achieve IPM while our work does not rely

on images. [Ullrich et al. 2008] assumes the number of model pa-
rameters is fixed. [Bokeloh et al. 2010] takes symmetry as an as-
sumption. [Wan and Sharf 2012] is limited to facade point clouds
and split grammar. [Vanegas et al. 2012a] takes Manhattan-World
as an assumption. [Boulch et al. 2013] is limited to constrained at-
tribute grammar. [Toshev et al. 2010] [Lafarge et al. 2010] [Huang
et al. 2013] work well on airborne laser scanning data, however, it
is hard to extend them to other types of data. [Stava et al. 2014]
works on tree models. [Demir et al. 2015] relys on semi-automatic
segmentation operations. Our method is full-automatic and makes
no assumption about the type of input geometric model and geo-
metric data. Consequently, similar to [Talton et al. 2011] [Ritchie
et al. 2015], our method can be used for general-purpose GIPM.

It is worth noting that there are a lot of other types of geometric
data reconstruction methods but not GIPM methods such as [Pu and
Vosselman 2009] [Zheng et al. 2010] [Nan et al. 2010] [Li et al.
2011] [Lafarge and Mallet 2012] [Poullis 2013] [Lin et al. 2013]
[Lin et al. 2015] [Monszpart et al. 2015] [Wang and kai Xu 2016].
A GIPM method results in procedural models, while other types of
methods usually result in mesh models. Procedural model is more
powerful than mesh model [Weissenberg et al. 2013], as it perceives
the abstract causal structure of input data [Lake et al. 2015].

3 Method Overview

Figure 2 shows our PPGMF pipeline. The task of PPGMF is to
search a procedural geometric model space for the model which is
rigidly geometrically similar to a query of non-complete point set.
Hence the input of a PPGMF method consists of an non-complete
query and a set of parametric geometric procedural modeling rules,
which defines the target model space. A query can be a continuous
or discrete point set (i.e. a point cloud). In this paper, we focus on
point cloud queries.
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Figure 2: Our PPGMF pipeline.

An example set of procedural modeling rules is shown in Table 1,
where p(·) denotes parameter prior. There are 3 rules A, B and
D in this example. The axiom rule A manages a non-recursive pa-
rameter xD and a recursive parameter xB . It is straightforward to
optimize for non-recursive parameters. However, it is challenging
to deal with recursive parameters. When the rules are executed, a
recursive parameter will spawn a family of non-recursive parame-
ters under the same name of this recursive parameter. We have to
individually identify every non-recursive parameter spawned from
the same recursive parameter. To this end, a calling trace can be
used. For example, we can identify a parameter xB in a calling
level 3 like this xB : A B2 B1 B2.

As shown in Fig. 2, given the query and the rules with parameter



rule A() rule B(xB) rule D(xD)
Sample xB ∼ p(xB) Sample xB ∼ p(xB) ...
Call B(xB) Call B(xB) end rule
Sample xD ∼ p(xD) Sample xB ∼ p(xB)
Call D(xD) Call B(xB)
... ...
end rule end rule

Table 1: An example set of rules.

x, a similarity calculation procedure is used to calculate the rigid
geometric similarity between the query and the model generated by
the procedural modeling procedure according to the rules. Based on
the calculated similarity, x is iteratively updated by the optimization
procedure. It is worth noting that the number of parameters may
vary during the optimization. Based on Bayesian inference theory,
the optimization problem can be formulated as follows:

max
x

p (x|Q) ∝ L(Q|x)p(x) (1)

where Q is the query, p(·|·) is the posterior of the parameters given
the query, L(·|·) is the likelihood of the query given the parameters,
and p(·) is the parameter prior.

The prior is directly drawn from the input modeling rules. Assume
that Mx represents the model corresponding to x, the likelihood
depends on the rigid similarity between Mx and Q (Section 4), the
optimization process is then performed (Section 5).

4 Rigid Geometric Similarity

A rigid geometric similarity metric should ensure that a geometric
model is most rigidly similar to itself than any other models. Let
M be the universal geometric model space, the self rigidly similar
property is formally stated as:

∀M ∈M, ∀M ′ 6=M, s(M ′,M) < s(M,M) (2)

where s(·, ·) denotes the similarity metric.

4.1 Full Similarity

SHD is the only metric satisfying the self rigidly similar property.
The SHD between two point sets P and P ′ is defined as:

ds(P, P
′) = max

{
d(P, P ′), d(P ′, P )

}
(3)

where d(·, ·) is the one-sided Hausdorff distance (OHD):

d(P, P ′) = max
a∈P

min
b∈P ′
‖a− b‖ (4)

where ‖·‖ is Euclidean norm. Note that, in general, d(P, P ′) 6=
d(P ′, P ).

Usually, we can use SHD to exactly measure the rigid similarity
between two point sets P and P ′. If ds(P, P ′) is 0, then P and
P ′ are the same. However, to calculate SHD, we have to compute
OHD two times, i.e., one time from P to P ′ and another time from
P ′ to P . In other words, only one OHD is insufficient for similar-
ity assessment [Aspert et al. 2002]. If only one OHD calculation
is required, the computational cost for similarity calculation can be
reduced. Fortunately, one of the point sets involved in our similarity
calculation is a geometric model. The measure of the model allows
us to compute OHD only once to assess similarity. It is worth not-
ing that different types of models have different types of measures.

For example, the measure of a curve is its length, the measure of a
surface is its area.

Our insight is that, in real world, two models M and M ′ are iden-
tical if and only if every point of M is in M ′ (i.e. d(M,M ′) = 0)
and the measure of M is equal to the measure of M ′. That means
the measure can be used for similarity assessment. We hence pro-
pose a Mean Measure (MM) to represent the rigid similarity be-
tween a model M and a query point set Q. Formally, MM is de-
fined as the ratio of the measure of M to the OHD from M to Q:

r(M,Q) =
|M |

ε+ d(M,Q)
(5)

where |·| denotes the measure of M , ε is a small positive number
used to derive different similarities for the models with different
measures but the same OHD of 0. For example, as shown in Fig. 3,
both d(C1, C1) and d(C2, C1) are equal to 0. If ε is 0, then both
r(C1, C1) and r(C2, C1) are infinite despite C1 is more similar to
C1 than C2. Theoretically, when ε is sufficiently small, the similar-
ity metric defined by MM can ensure that a model is most similar
to itself than any other models.

(a) (b) (c) (d)

Figure 3: An illustration of rigid similarity. (a) Curve C1, (b)
Curve C2, (c) Curve C3, and (d) the overlap of C1, C2 and C3.
The overlapping part (black) shows that C2 is a part of C1 or C3.

Theorem. MM is a rigid geometric similarity metric for real-world
geometric models. Note that, a real-world model M has a positive
finite measure, i.e. 0 < |M | < +∞. LetMW be the real-world
geometric model space, this theorem is proved as follows.

Proof. ∀M ∈MW , ∀M ′ 6=M , (1) IfM ′ ⊂M , then |M ′| < |M |
and d(M ′,M) = d(M,M), so r(M ′,M) < r(M,M) because
ε > 0; (2) If M ′ 6⊂ M , then r(M ′,M) < +∞ because |M ′| <
+∞ and d(M ′,M) > 0. Meanwhile, r(M,M) → +∞ because,
d(M,M) = 0, 0 < |M | and ε is assumed to be sufficiently small,
i.e. ε→ 0. So r(M ′,M) < r(M,M). So MM is a rigid similarity
metric for real-world models according to Eq. (2).

Note that, the values of MM are comparable for the same query, but
are incomparable for different queries. That is, it makes no sense
to compare the MM values across different queries. For example,
as shown in Fig. 3, it makes no sense to compare r(C2, C2) and
r(C2, C1), although r(C2, C2) = r(C2, C1). It is worth noting
that, the query is unnecessary to have a geometric measure. That is,
the query can be a discrete point set, i.e., a point cloud. If the query
Q is discrete, then ε is trivial because d(M,Q) is always larger
than 0. In practice, we use squared mean measure (SMM), which
is a variant of MM and is defined as:

rs(M,Q) =
|M |

ε+ d2(M,Q)
(6)

4.2 Partial Similarity

SHD and MM are defined as full similarity metrics as they assume
that the query is complete. However, if the query is non-complete,
we have to calculate partial similarity, which is challenging. Partial
similarity is not straightforward and is fundamentally different from
full similarity. If two point sets have a common part, then these two



point sets are partially similar. As shown in Fig. 3, each pair of C1,
C2 and C3 are partially similar, while they are not fully similar. We
expect that the partial similarity between C1 and C2 is equal to the
partial similarity between C2 and C2. Because the common part
between C1 and C2 is the same as the common part between C2

and C2.

Consequently, we propose a Weighted Mean Measure (WMM) to
represent the partial similarity between a geometric model M and
a query point set Q. We divide M into N non-overlapping sub-

models: M =
N
∪
i=1

Mi, and define WMM as:

rw(M,Q) =

N∑
i=1

wi |Mi|

ε+ dw(M,Q)
(7)

where wi is the weight: wi = exp (−d(Mi, Q) h), where h is the
weighting factor, which is a non-negative number. When h is 0,
WMM becomes a full similarity metric. dw(·, ·) is the weighted
mean error [Aspert et al. 2002]:

dw(M,Q) =

N∑
i=1

wid(Mi, Q)

N∑
i=1

wi

(8)

By weighting, the sub-models ofM far away fromQ have less con-
tribution to the computation of WMM than those close sub-models.
In other words, the common part of M and Q makes major contri-
bution to WMM, making WMM plausible to measure partial sim-
ilarity. One merit of WMM is that it has only one argument h, as
ε is trivial. Similar to MM, it can be easily proved that WMM is a
rigid geometric similarity metric.

Let C1, C2 and C3 be model spaces containing models C1, C2 and
C3 (Fig. 3), respectively. There are 3 cases of partial similarity for
PPGMF. (1) Target model is a part of query. For example, target
model C2 is a part of query C1. This case corresponds to partially
fitting C2 to over-complete data C1. (2) Query is a part of target
model. For example, query C2 is a part of target model C1. This
case corresponds to partially fitting C1 to incomplete data C2. (3)
Target model and query have common part. For example, target
model C1 and query C3 have common part. This case corresponds
to partially fitting C1 to hybrid-complete data C3.

4.3 Similarity Calculation

To compute MM (SMM or WMM) between a model and a point set,
we have to compute OHD from the model to the point set, which
consists of two steps. First, the model is uniformly divided into
sub-models, and the center points of the sub-models are sampled
(Section 5.2). Second, the nearest point is searched in the point set
for a query point. This is time-consuming if the point set contains a
large number of points (e.g. a laser scanning point cloud consisting
of millions of points). We employ the FLANN [Muja and Lowe
2014] algorithm to perform nearest neighbour searching. The com-
putational complexity for computing MM depends on the number
of points sampled from the model and the size of the point set.

5 Optimization

Given the rigid geometric similarity defined by MM, we empirically
define the likelihood in the optimization problem (see Eq. (1)) as:

L(Q|x) = exp
(√

r(Mx, Q)
)

(9)

Eq. (1) defines a derivative-free optimization problem, for which
traditional mathematical optimization methods are not applicable.
We use the Metropolis-Hastings (MH) algorithm [Metropolis et al.
1953] [Hastings 1970] to solve Eq. (1). MH algorithm is a general
and popular MCMC optimization algorithm [Talton et al. 2011].

5.1 Metropolis-Hastings Algorithm

Let xi be the value of variable x in iteration i, the MH algorithm
works as follows. First, x is randomly initialized as x0. To deter-
mine xi+1 in each iteration, x̃ is sampled from a proposal density
function p(x|xi). The probability of accepting x̃ as xi+1 is defined
as:

α(xi → x̃) = min

{
1,
p(x̃|Q)

p(xi|Q)

p(xi|x̃)
p(x̃|xi)

}
(10)

That is, the probability for xi+1 = x̃ is α, and the probability for
xi+1 = xi is (1− α).

We now define the proposal function for the modeling parameter
x. Similar to [Vanegas et al. 2012b], each parameter x ∈ x is
required to be within a range of [xmin, xmax]. For a continuous
parameter, we randomly select one of the following two proposal
functions, i.e., local move function and global move function in
each iteration. The local move function is a Gaussian function, that
is, x̃ ∼ N (xi, σ2

x), where σx = σ(xmax − xmin), and σ is the
standard deviation ratio. The global move function is a uniform
function, that is, x̃ ∼ [xmin, xmax]. We use β to denote the prob-
ability for selecting local move function, and 1 − β to denote the
probability for selecting global move function. For a discrete pa-
rameter, we always perform global move. Since both local move
and global move functions are symmetric, the probability of ac-
cepting x̃ is simplified as:

α(xi → x̃) = min

{
1,
p(x̃|Q)

p(xi|Q)

}
(11)

5.2 Early Rejection

The acceptance probability indicates that the proposed model with
a larger similarity is more likely to be accepted than the model with
a smaller similarity. More time will be consumed to obtain more
accurate similarity since more points have to be sampled from the
model. However, we observe that, it is sufficient to determine the
dissimilarity by sampling only one point from the model. As shown
in Fig. 4, Curve C4 consists of one horizontal line segment, and
Curve C5 consists of two vertical line segments, these two curves
are dissimilar. The similarities computed by sampling one point
(Fig. 4c) and four points (Fig. 4a) are the same and equal to the
true similarity. However, if two points are sampled (Fig. 4b), the
computed similarity will be incorrect as it shows that C4 and C5

are similar. It can be inferred that a small similarity between two
objects means that these two objects are dissimilar. However, a
large similarity between two objects does not mean that these two
objects are really similar. In other words, a proposed model should
be accepted carefully but rejected boldly.

Consequently, to reduce computational time, we propose a coarse-
to-fine model dividing strategy for similarity calculation to reject
dissimilar models in advance. We take a square surface for example
(as shown in Fig. 5), and the conclusions can be easily adapted to
other types of geometric models. Assuming that the length of the
square surface is γ, given a predefined minimal dividing resolution
δ, the top dividing level is:

ηtop = log2(γ/δ + 1) (12)



(a) (b) (c)

Figure 4: Overlap between Curves C4 (green) and C5 (blue).
Black dots represent the points sampled from C4. (a), (b) and (c)
show that 4, 2 and 1 point(s) are sampled, respectively.

At each level η, we uniformly divide the surface into 22η sub-
surfaces, and sample only one point (center point) from each sub-
surface to calculate OHD. The similarity is then calculated to decide
whether to accept or reject the proposed surface. If it is accepted,
then the surface is divided into more sub-surfaces and more points
are sampled at a higher level to obtain more accurate similarity.
Otherwise, a new surface is proposed.

(a) (b) (c)

Figure 5: A square surface to illustrate the coarse-to-fine model
dividing. From left to right, the dividing level is 0, 1 and 2, respec-
tively. The black dots represents the points sampled in the current
level, and the white dots represents the points sampled in previous
levels.

5.3 Pseudo Code

The pseudo code of our MH-PPGMF method is presented in Algo-
rithm 1, where pη(·|·) denotes the posterior computed at dividing
level η. The minimal model dividing resolution δ should be set as
small as possible to obtain accurate similarity. To achieve better
performance, parallel tempering with the same configuration as in
[Talton et al. 2011] is also used. That is, 10 Markov chains are run
with different temperatures and the chains are randomly swapped.

6 Results

We implemented our method in C++ and conducted our exper-
iments on a machine running Ubuntu 14.04 with Intel Core i5-
3470 3.20GHz CPU and 12GB RAM. In all experiments, we set
ε = 10−8, β = 0.8, σ = 0.05. δ should be at least 2 times smaller
than query resolution.

6.1 Metric Comparison

We compare several metrics with our WMM metric by fitting 4
models (Fig. 6) to 4 queries (Fig. 7). Model Mx

1 ∈ M1 is a ring-
like surface between an outer square and an inner square. The outer
and inner squares have the same center. The length of the outer
and inner squares are 4 and 2x, respectively. Models Mx

2 ∈ M2,
Mx

3 ∈ M3 and Mx
4 ∈ M4 are 0.75, 0.5 and 0.25 part of Mx

1 ,
respectively. As shown in Fig. 7, for i = 1 to 4, the ground-truth
model of Qi is Mx=1

i . In this paper, we refer to the target model of
a query as the model which is partially similar to the ground-truth
model. Therefore, for each query in Fig. 7, there is an target model

Algorithm 1 MH-PPGMF with early rejection

input: a set of modeling rules with parameter x, query Q, poste-
rior function p(x|Q), computational budget I , standard deviation
ratio σ, local move probability β, and minimal model dividing
resolution δ.
output: a maximum a posteriori estimate of x: x∗.
Randomly initialize x0, x∗ ← x0

for i = 0 to I do
Randomly select a parameter x ∈ xi

Sample t ∼ [0, 1]
if t < β and x is continuous then

Sample x̃ ∼ N (xi, σ2
x)

else Sample x̃ ∼ [xmin, xmax]

Compute ηtop of M x̃ according to δ
for η = 0 to ηtop do

α← min
{
1,

pη(x̃|Q)

p(xi|Q)

}
Sample t ∼ [0, 1]
if t < α then xi+1 ← x̃
else xi+1 ← xi, break

if p(xi+1|Q) > p(x∗|Q) then x∗ ← xi+1

existing in each model space (as shown in Fig. 6). That is, for i = 1
to 4 and j = 1 to 4, the target model of Qi inMj is Mx=1

j .

(a) (b) (c) (d)

Figure 7: Queries. From left to right: Queries Q1, Q2, Q3 and
Q4. For i = 1 to 4, Qi is a point cloud uniformly sampled from
Model Mx=1

i with 0.02 resolution. Q1, Q2, Q3 and Q4 consist of
12288, 9216, 6144 and 3072 points, respectively.

The metrics used for comparison include negative SHD (-SHD),
negative VD (-VD), negative OHD from query to model (-
OHDQM), and inlier ratio (IR). VD has been used in [Talton et al.
2011] [Ritchie et al. 2015], while OHDQM has been used in [Ull-
rich et al. 2008]. As the foundation of many BGMF methods such
as [Fischler and Bolles 1981] and [Isack and Boykov 2011], IR is
defined as:

sIR(M,Q) =
z(Q ∩M)

z(Q)
(13)

where z(·) denotes the size of discrete point set. The comparison
results of fitting the models (Fig. 6) to the queries (Fig. 7) are
shown in Fig. 8. To compute SHD, OHDQM and WMM, we uni-
formly sample points from the models with a resolution of 0.01,
which is half of the query resolution. In these 16 experiments, the
weighting factor h for WMM calculation is 2.5, and the resolution
for VD calculation is 0.04.

As the target models of the queries are models with x = 1, it is
expected that the models with x = 1 have the largest similarities.
As shown in Fig. 8, our WMM is the only metric to achieve this
goal for all experiments. SHD is successful for full fitting (Figs.
8a, 8f, 8k and 8p), but failed for partial fitting except Fig. 8g. IR is
failed to distinguish models with x < 1 for all experiments except
Fig. 8k. The total computational time of these 16 experiments is
shown in Fig. 9a, it can be seen that WMM is faster than SHD.
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Figure 6: Model spaces. From left to right: Model spacesM1,M2,M3 andM4. Each of these 4 spaces has only one parameter x ∈ [0, 2].

It is worth noting that SHD, OHDQM and WMM always pre-
fer to sample points from model with smaller resolution to obtain
more accurate similarity. However, VD produces worse results
with smaller resolution for a discrete query. Fine voxelization of
a discrete query produces more empty voxels. Therefore, an empty
model (e.g. Mx=2

1 ) is preferred, of that one example is shown in
Fig. 9b. This indicates that voxelization is not suitable for the fine
fitting of point clouds.

It is interesting to find that Fig. 8c resembles Fig. 8d. Actually,
before normalizing, the original similarities are different. As shown
in Table 2, the WMM similarities are comparable across different
model spaces for the same query. This table along with Fig. 8
demonstrates that, a model is most similar to itself than any other
models using WMM. Finally, we take the experiment of fitting Mx

1

to Q2 as an example to evaluate the effect of weighting factor h.
As shown in Fig. 9c, WMM is very stable with respect to different
values of h.

Model Mx=1
1 Mx=1

2 Mx=1
3 Mx=1

4

Query
Q1 1056.4 792.288 528.195 264.094
Q2 239.651 792.288 528.195 264.094
Q3 96.4585 113.127 528.195 264.094
Q4 32.6646 34.4811 44.3055 264.094

Table 2: WMM similarities between the target models and queries.
The diagonal elements represent the similarities between the
ground-truth models and queries. It is shown that, for the same
query, the similarity between the ground-truth model and the query
is the largest among all similarities.

6.2 Fitting Noisy Data

We evaluate our method against uniform and Gaussian noise by fit-
ting a sphere modelM5 to 4 queries (Fig. 10). We use the method
in [Marsaglia 1972] to sample points from the sphere surface and
replace γ (see Eq. (12)) by 2πR, where R is the radius of the
sphere. The sphere model M5 has 4 parameters, including 3 lo-
cation parameters and 1 radius parameter. Some sample models of
M5 are shown in the top row of Fig. 11. It is worth noting that
all the model parameters involved in this paper are uniformly dis-
tributed. As a result, the optimization objective is reduced from
posterior to likelihood and then rigid similarity. Besides, we stop
model fitting casually in this paper.

The resolution of the noise-free query Q5 (Fig. 10a) is 0.2. We
set δ = 0.04 and h = 10 in these sphere fitting experiments, the
results are presented in Figs. 11 and 12. As shown in Figs. 12a and
12b, the target similarities (log likelihood) still remain the largest
similarities after sufficient evolution time. This indicates that our

(a) (b) (c) (d)

Figure 10: Queries. From left to right: Queries Q5, Q6, Q7 and
Q8. Q5 is a noise-free point cloud consisting of 549 points sampled
from a unit sphere surface. Q6 and Q7 are generated by adding
low-level and high-level uniform noise toQ5, respectively. Q6 con-
sists of 1098 points, while Q7 consists of 2985 points. The uniform
noise is distributed within a cube with a length of 2. The cube and
the unit sphere have the same center. Q8 is generated by adding
Gaussian noise with a standard deviation of 0.2 to Q5.

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 11: Fitted sphere models (blue) along with the queries
(green, Fig. 10). Top row: randomly initialized models. Bottom
row: final fitted models (Fig. 12). From left to right: fitting the
sphere to Q5, Q6, Q7 and Q8, respectively.

method is robust to uniform noise. Similarly, Fig. 12c shows that
our method is also robust to Gaussian noise. Our method can only
be slightly affected by Gaussian noise.

However, uniform noise influences the efficiency of our method.
Particularly, tens of minutes have been consumed to generate the
results shown in Figs. 12a and 12c, however, several hours have
been consumed to obtain a desirable model shown in Fig. 12b. This
is because high-level uniform noise introduces many local maxima
to the objective function, making it difficult to find the global max-



x

0 0.5 1 1.5 2

s
n
(M

x 1
,Q

1
)

0

0.2

0.4

0.6

0.8

1

-SHD

-VD

-OHDQM

IR

Our WMM

(a)
x

0 0.5 1 1.5 2

s
n
(M

x 2
,Q

1
)

0

0.2

0.4

0.6

0.8

1

(b)
x

0 0.5 1 1.5 2

s
n
(M

x 3
,Q

1
)

0

0.2

0.4

0.6

0.8

1

(c)
x

0 0.5 1 1.5 2

s
n
(M

x 4
,Q

1
)

0

0.2

0.4

0.6

0.8

1

(d)

x

0 0.5 1 1.5 2

s
n
(M

x 1
,Q

2
)

0

0.2

0.4

0.6

0.8

1

(e)
x

0 0.5 1 1.5 2

s
n
(M

x 2
,Q

2
)

0

0.2

0.4

0.6

0.8

1

(f)
x

0 0.5 1 1.5 2

s
n
(M

x 3
,Q

2
)

0

0.2

0.4

0.6

0.8

1

(g)
x

0 0.5 1 1.5 2

s
n
(M

x 4
,Q

2
)

0

0.2

0.4

0.6

0.8

1

(h)

x

0 0.5 1 1.5 2

s
n
(M

x 1
,Q

3
)

0

0.2

0.4

0.6

0.8

1

(i)
x

0 0.5 1 1.5 2

s
n
(M

x 2
,Q

3
)

0

0.2

0.4

0.6

0.8

1

(j)
x

0 0.5 1 1.5 2

s
n
(M

x 3
,Q

3
)

0

0.2

0.4

0.6

0.8

1

(k)
x

0 0.5 1 1.5 2

s
n
(M

x 4
,Q

3
)

0

0.2

0.4

0.6

0.8

1

(l)

x

0 0.5 1 1.5 2

s
n
(M

x 1
,Q

4
)

0

0.2

0.4

0.6

0.8

1

(m)
x

0 0.5 1 1.5 2

s
n
(M

x 2
,Q

4
)

0

0.2

0.4

0.6

0.8

1

(n)
x

0 0.5 1 1.5 2

s
n
(M

x 3
,Q

4
)

0

0.2

0.4

0.6

0.8

1

(o)
x

0 0.5 1 1.5 2

s
n
(M

x 4
,Q

4
)

0

0.2

0.4

0.6

0.8

1

(p)

Figure 8: Metric comparison results. From left to right: the results of fitting Models Mx
1 , Mx

2 , Mx
3 and Mx

4 to the queries. From top to
bottom: the results of fitting the models to Queries Q1, Q2, Q3 and Q4. The vertical axis sn(·, ·) denotes the normalized similarity. We
uniformly normalize the similarities into a range of [0, 1]. The legend for these figures are presented in (a). The figures in diagonal, above
diagonal and below diagonal represent the results of full fitting on complete data, partial fitting on over-complete data and partial fitting on
incomplete data, respectively.

imum. The IPS indicator in Fig. 12 shows the influence of our
early rejection strategy. It can be observed that, the optimization
process is accelerated by about 3 times using early rejection. These
experiments additionally demonstrate that our method is able to fit
non-planar models.

6.3 Fitting Models with length-varying parameters

Fitting a model with varying number of parameters is more difficult
than fitting a model with a fixed number of parameters. In this pa-
per, we investigate two modelsM6 andM7 (Figs. 13 and 14) with

varying numbers of parameters, which are based on the CGA shape
grammar [Müller et al. 2006]. M6 andM7 are models of build-
ings. The models inM6 consist of 4 facades, while the models in
M7 consist of 1 facade. Let n be the number of floors, M6 has
7 + 2n parameters, i.e., 1 parameter for rotation, 3 parameters for
location, 3 parameters for mass size (height, length and width), 2n
parameters for window size. n depends on the height of building.
Different fromM6,M7 does not have the width parameter. Win-
dows in the same floor have the same size, but may have different
sizes on different floors. Some sample models ofM6 andM7 are
shown in Fig. 14.
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Figure 9: (a) Total time for similarity calculation on experiments shown in Fig. 8. (b) -VD similarities of fitting Mx
1 to Q1 with resolutions

0.2, 0.08, 0.02, 0.01 and 0.005. (c) WMM similarities of fitting Mx
1 to Q2 with weighting factor h=0.5, 1, 2, 4 and 8.
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Figure 12: Sphere fitting results. (a), (b) and (c) are the results of fitting the sphere modelM5 to Q6, Q7 and Q8 (Fig. 10), respectively. LL,
IPS and ER denote log likelihood, iterations per second, and early rejection, respectively. LL ER, LL NER, IPS ER and IPS NER denote the
evolutions of LL with ER, LL without ER, IPS with ER, and IPS without ER, respectively. LL Target denotes the target log likelihood.

(a) (b) (c) (d)

Figure 13: Queries and target models. (a) Query Q9, (b) Query Q10. (c) and (d) are models in Model spacesM6 andM7, respectively.
Both Q9 and Q10 are part of the point cloud which is uniformly sampled from (c) with resolution 0.2. (d) is a part of (c). Consequently, (c)
and (d) are target models of Q9 (and Q10) inM6 andM7, respectively. Q9 consists of 4204 points, while Q10 consists of 2452 points.

(a) (b) (c) (d)

Figure 14: Some sample models ofM6 orM7 along with Q9 or Q10.

The results of fitting M6 to Q9 (Fig. 13a) and Q10 (Fig. 13b),
fitting M7 to Q10 are shown in Figs. 15 and 16. In these 3 ex-
periments, we set h = 2.5, δ = 0.1. As shown in Fig. 15, after
5000 iterations, the mass parameters are correctly estimated, while
the window parameters are incorrectly estimated. Finally, all the

parameters are correctly estimated. These 3 experiments show that
our method is able to fit incomplete data with holes. The experiment
of fittingM7 to Q10 additionally demonstrates that our method is
able to fit hybrid-complete data.



(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 15: Fitted models. From left to right: results of fittingM6 to Q9,M6 to Q10, andM7 to Q10. From top to bottom: the randomly
initialized models, fitted models after 5000 iterations, and final fitted models.
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Figure 16: Fitting results. (a), (b) and (c) are results of fittingM6 to Q9, fittingM6 to Q10, and fittingM7 to Q10, respectively.

6.4 Fitting Laser Scanning Data

We also conducted experiments for fitting real-world laser scanning
point clouds, which were collected by mobile laser scanners [Guan
et al. 2014] [Yu et al. 2016]. The results of fitting a facade model
M8 to a facade point cloud Q11 (Fig. 17b) are shown in Figs. 17
and 1. M8 has 15 parameters. Instead of WMM, we use SMM
(Eq. (6)) to perform this experiment and set δ = 0.08. In contrast
to WMM, no argument h is needed to calculate SMM. We tested
WMM and found that WMM is not very effective for Q11 due to
that the holes in Q11 are corrupted. That is, there are undesired
points within the holes. These corrupted holes are incorrectly rec-
ognized as missing data by WMM. In other words, although WMM
is able to distinguish the difference between uncorrupted holes and
missing data (as shown in Section 6.3), WMM is unable to dis-
tinguish the difference between corrupted holes and missing data.
Fortunately, as shown in the results, SMM is able to deal with cor-
rupted holes.

7 Conclusion

We have proposed a novel rigid geometric similarity metric to mea-
sure the similarity between geometric models. Based on the pro-
posed metric, we presented the first method to rigidly fit arbitrary
geometric model to non-complete data. We formulate the fitting
problem as a Bayesian inference problem and employ MCMC tech-
nique to perform the inference. We also proposed a novel technique
to accelerate the inference process. Our method has been demon-
strated on various geometric models and non-complete data. Ex-
perimental results show that our metric is effective for fitting non-
complete data, while other metrics are ineffective. It is also shown
that our method is robust to noise. In summary, our method is able
to fit non-complete data without holes (Section 6.2), non-complete
data with uncorrupted holes (Section 6.3) or over-complete data
with corrupted holes (Section 6.4).

We believe our work bridges the gap between inverse procedural
modeling and geometric model fitting. However, several issues still
remain open. For example, due to the curse of dimensionality, the
fitting problem becomes intractable if the geometric model has a



(a) (b) (c) (d)

Figure 17: Fitted model. (a) An original point cloud consisting of 385793 points. (b) A query Q11 consisting of 23266 points. Q11 is
generated by downsampling the original point cloud (a) with a resolution of 0.2. (c) Final fitted model (after 84540 iterations and 36146.0820
seconds) for fittingM8 to Q11. (d) Overlap between the query Q11 and the final model shown in (c).

large number of parameters. New techniques such as deep learning
[Nishida et al. 2016] [Ritchie et al. 2016] are expected to address
this problem. Besides, it is also challenging for our method to fit
incomplete data with corrupted holes, because a corrupted hole may
incorrectly be recognized as missing data. This problem may be
addressed using some preprocessing process, e.g., filtering out the
undesired points within each hole.
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