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Abstract

Procedural model fitting (PMF) is a generalization of classical model fitting and

has numerous applications for computer vision and computer graphics. The task

of PMF is to search a geometric model set for the model that is most similar

to a set of data points. We propose a strict and robust similarity estimator for

PMF to handle imperfect data. The proposed estimator is based on the error

from model to data, while most other estimators are based on the error from

data to model. We then use the proposed estimator to guide the cuckoo search

algorithm to search for the most similar model. To accelerate the search process,

we also propose a coarse-to-fine model dividing strategy to early reject dissimi-

lar models. In this paper, the proposed PMF method is applied to fit building

models on laser scanning data. It is also applied to fit character models on eigh-

teen variants of imperfect MNIST data to achieve few-shot pattern recognition.

In the 5-shot recognition, our method outperforms the state-of-the-art method

on thirteen variants of the imperfect data. In particular, for one of the data

corrupted by grid lines, our method obtains a high accuracy of 65%, whereas
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the state-of-the-art method only obtains an accuracy of 30%.

Keywords: Complex model fitting, imperfect point set, inverse procedural

modeling, probabilistic program induction, few-shot pattern recognition

1. Introduction

A procedural model set is defined by a probabilistic program consisting of

several parametric rules [1, 2]. Retrieving desired models from a procedural

model set is a newly growing topic called inverse procedural modeling [3] or

probabilistic program induction [4]. As a special case of probabilistic program5

induction, procedural model fitting (PMF) aims to search a procedural geomet-

ric model set for the model that is most similar to (i.e., best explains) a given

set of data points. PMF has achieved remarkable progress in computer vision

and computer graphics as it can extract rich structure information from the

data [4, 5]. For example, PMF has achieved human-level performance in the10

one-shot pattern recognition task [4].

However, it is difficult to perform PMF as it has three challenging issues.

The first issue is the creation of the probabilistic program, which is manually

addressed in some methods [6, 7, 8, 9]. Several methods have also been proposed

to automatically create the probabilistic program [10, 11, 4, 12]. Given the15

probabilistic program that defines the procedural model set, the sceond issue is

the optimization problem to find the desired model from the model set. This

can be addressed by Markov chain Monte Carlo [6, 13, 7], reinforcement learning

[14, 15], sequential Monte Carlo [8], active-set [4], cuckoo search [16, 17], genetic

algorithm [9], or neural parsing [18] [19].20

Different from the aforementioned two issues that come from the model

side, the third issue comes from the data side. That is, PMF needs a geometric

similarity estimator to estimate the similarity between model and data to guide

the optimization process. Most existing PMF methods pay major attention

to address the model-side issues, while tackle the data-side issue using common25

estimators. Such a commonly used estimator is voxel difference, which is used in
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PMF methods [6, 8, 4, 9]. Another commonly used estimator is the Error from

Data to Model (EDM), which is introduced in the well-known least squares

method and is still widely used in modern computer science [20, 21]. Voxel

difference and EDM are simple to understand and easy to implement. However,30

EDM is sensitive to outliers [22]. Voxel difference is also sensitive to imperfect

data. In practice, data usually suffer from imperfection. That is, data are

commonly contaminated by gross-outliers [23], pseudo-outliers [24, 25], noise,

and missing data [26].

In this paper, we propose a novel geometric similarity estimator for PMF to35

robustly handle imperfect data. The proposed estimator is based on the Error

from Model to Data (EMD), with our key insight that EMD is more reliable

than EDM if the data are imperfect. As the counterpart of EDM, EMD is as

simple as EDM. Although extensive investigations have been conducted in EDM

[27], only a few works can be found in EMD. Note that, similar to EDM, using40

EMD only is insufficient to represent the similarity between a model and data

[28]. A regularization term should be used to regularize EMD to ensure that

only one model is most similar to the data. The ground-truth model cannot

be distinguished from some trivial (null) models by the method proposed in

[29], as it uses EMD without regularization [30]. The method proposed in45

[31] also uses EMD but requires the model to be within a narrow crust, which

limits the application of EMD. In contrast, the proposed estimator has very few

requirements for the model using a novel regularization approach.

Given the similarity estimator, we use the cuckoo search algorithm [16] to

perform optimization for PMF in this paper. With few parameter to tune,50

the cuckoo search algorithm is a recently popular random optimization algo-

rithm. In general, the optimization algorithm needs to accurately estimate the

similarity, which is time-consuming. Observing that the dissimilarity can be

determined by sampling only one point from the model, we propose a novel

coarse-to-fine model dividing strategy to early reject dissimilar models to accel-55

erate the optimization process.

The contributions of this paper can be summarized as follows. (1) A novel
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geometric similarity estimator is proposed to strictly and robustly estimate the

similarity between a complex geometric model and an imperfect data point set;

(2) A novel early rejection strategy is proposed to accelerate the cuckoo search60

based PMF; (3) Several robust PMF applications are explored to fit cylinders,

characters, and buildings.

The rest of this paper is structured as follows. In Section 2, we review

the related work. In Section 3, we give the preliminary knowledge for PMF.

We then present our similarity estimator, our early rejection strategy, and the65

experiments in Sections 4, 5, and 6, respectively. We finally conclude the paper

in Section 7.

2. Related work

Most existing robust model fitting methods were proposed to fit classical

models. A classical model is usually represented by a single parametric rule.70

For example, a line, a circle, or a polynomial function can be represented by a

single equation. One of the most popular robust methods is RANdom SAmple

Consensus (RANSAC) [32]. Assuming that a candidate model can be deter-

mined by a subset of the data points, RANSAC finds the desired model from

the candidate models using inlier number criterion [33]. A lot of methods have75

been proposed to improve RANSAC in terms of accuracy [34, 35] [36], efficiency

[37, 38] [39], and global consistency [40, 24, 41] [42]. Another popular robust

method is Hough transform [43, 44], which achieves model fitting by implicitly

maximizing inlier number through voting in the space of model parameters [45].

Hough transform has been used to extract some classical models such as lines80

[46, 47] [48], circles [49, 50], ellipses [51, 52, 53], curves [54, 55, 56], and planes

[57] [58].

However, a procedural model is usually more complex than a classical model,

as it is usually represented by a number of parametric rules. For example, a pro-

cedural building model [59] can contain boundaries and holes, which are rare in85

a classical model. In practice, a procedural model can consist of different types
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of sub-models, while a classical model is normally composed of sub-models with

the same type. Furthermore, the relation between model parameters and model

points is commonly straightforward in a classical model, while it can be com-

plicated in a procedural model as defined by a black-box probabilistic program.90

Moreover, the number of model parameters is usually fixed in a classical model,

while it can vary in a procedural model set [6]. Therefore, it is unclear how

to extend a classical model fitting method to handle procedural models. For

example, the aformentioned assumption of RANSAC-like methods are usually

not applicable to procedural models. For another example, Hough transform95

is typically used to handle models with less than 10 parameters [60], while a

procedural model can have tens of even thousands of parameters [9].

Nevertheless, the similarity estimator used by a classical model fitting method

can be used for PMF. One of the most popular robust estimators is inlier num-

ber or its extension M-estimator [61, 33]. However, inlier number needs a hard100

threshold to determine if a point is an inlier or not. Similarly, it is not straight-

forward to choose an appropriate robust function for M-estimator to handle

different types of imperfect data. Moreover, inlier number and M-estimator are

suffered from overfitting to data, as they use EDM without regularization. Ac-

tually, using EDM only is insufficient to strictly represent the similarity between105

a model and data [28]. To overcome overfitting, an EDM-based estimator usu-

ally has two terms, the EDM term and a regularization term. The regularization

term is used to ensure that only one model is most similar to the data. There

are two major types of regularization terms: EMD and model smoothness. The

frequently used Hausdorff distance [62] is an EDM-based estimator regularized110

by EMD. Various forms of model smoothness have been proposed [27], including

local smoothness [63, 64, 65], global smoothness [66, 67], piecewise smoothness

[68], and volumetric smoothness [69].
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3. Preliminaries

A k-dimensional point set P is a subset of Rk, i.e., P ⊂ Rk. In this paper,115

k ∈ {1, 2, 3}. A geometric model is a special point set consisting of one or more

continuous sub-point sets. For example, a character is composed of several

strokes. As it is uncountable, a continuous point set is usually represented by

a parametric rule. For instance, a 2-dimensional line segment is a continuous

point set and can be represented by a rule with parameters θ1 ∈ R2 and θ2 ∈ R2:120

{θ1 + tθ2|t ∈ [0, 1]}. It is easy to know that, if the parameters of a rule are

variable, then the rule defines a set of models.

3.1. Probabilistic program

As a generalization of parametric rule, a probabilistic program is composed

of several parametric rules. Actually, a probabilistic program is able to represent125

any model [70]. This paper focuses on building models [59] and character models

[4]. Table 1 shows an example of probabilistic program, which has three rules:

Building, Facade, and Floor. Building is the start rule and calls Facade with

variable α sampled from the prior pα(·). α implicitly determines the number

of Floors. The prior pα(·) is uniformly distributed. That is, α ∈ [0, αmax] ∩130

Z, where αmax is a predefined maximum number of Floors. For simplicity,

this paper only investigates uniformly distributed priors, although they play

important roles in a probabilistic program.

Facade is a recursive rule. Before calling itself, Facade calls Floor with

variable β. Furthermore, β specifies the size of the hole generated by the Floor135

rule. During the execution of this probabilistic program, multiple instances of

Facade may be produced. Therefore, multiple instances of β may exist. For

PMF, it is needed to identify different instances of the same variable. For this

example probabilistic program, β can be simply identified with the parameter

i: βi. For more complex cases, a calling trace can be used for the identification.140

6



Table 1: An example probabilistic program.

rule Building()

Sample α ∼ pα(α)

Facade(0, α)

end rule

rule Facade(i, α)

if i < α

Sample β ∼ pβ(β)

Floor(i, β)

Facade(i+ 1, α)

end if

end rule

rule Floor(i, β)

//Generate a rectangle

//at height i,

//dig out a square hole

//with size β

//from the rectangle.

end rule

Input 

Data

Points

Optimization Convergence

Generated 

Model

End

Execution

Updated 

Parameters

Similarity

Calculation

Input

Probabilistic 

Program

Yes

No

Start

Fig. 1. Our PMF pipeline.

3.2. Procedural model fitting

Given a data point set D and a probabilistic program g, the task of PMF is

to search the model set defined by g for the model that is most similar to D. As

shown in Fig. 1, our PMF method proceeds as follows. Given the data D and

the probabilistic program g with parameter θ, a similarity calculation procedure145

is used to calculate the geometric similarity between D and the model generated

according to g. Based on the calculated similarity, θ is iteratively updated by

the optimization procedure.

From a Bayesian perspective, the PMF optimization problem can be formu-
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lated as follows:

max
θ

f (θ|D) ∝ L(D|θ)p(θ), (1)

where D is the data point set, f(·|·) is the posterior of the parameters given the

data, L(·|·) is the likelihood of the data given the parameters, and p(·) is the

parameter prior predefined in the input program g. As the prior is assumed to

be uniformly distributed, the posterior is reduced to the likelihood. LetMg be

the model set defined by g, we define the likelihood L(·|·) as:

L(D|θ) = s(Mθ
g , D), (2)

where Mθ
g ∈ Mg is the model corresponding to θ, and s(·, ·) is the geometric

similarity between Mθ
g and D (Sections 3.3 and 4). Equation (1) defines a non-150

convex optimization problem, for which traditional mathematical optimization

methods are inapplicable. We use the cuckoo search algorithm [16], which is a

random optimization algorithm, to solve Eq. (1) (Sections 3.4 and 5).

3.3. Strict geometric similarity

A geometric similarity estimator is used to estimate the similarity between

two point sets. In this paper, an estimator is considered as a strict estimator if

it can ensure that a point set is most similar to itself. Formally, an estimator

s(·, ·) is strict if it satisfies the following property:

s(Q,P ) < s(P, P ) ∀P ∈ Pu ∀Q ∈ Pu \ {P}, (3)

where Pu is the universal set of point sets. In the context of model fitting, one155

of the two point sets involved in similarity estimation is a geometric model. To

achieve procedural model fitting, the similarity estimator should be strict. Only

with a strict estimator, it can be guaranteed to find the ground-truth model if

the data is perfect (i.e., the data point set is the ground-truth model itself).

A well-known strict estimator for Pu is Hausdorff distance [62, 28], which is

defined as:

dH(P,Q) = max {d(P,Q), d(Q,P )} , (4)
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where P ∈ Pu, Q ∈ Pu, and d(P,Q) is the error from P to Q:

d(P,Q) = max
p∈P

min
q∈Q
‖p− q‖ , (5)

where ‖·‖ is Euclidean norm. In general, the error from P to Q does not equal160

the error from Q to P , and using only one of these two errors is insufficient

to represent the similarity between P and Q [28]. That is, neither d(P,Q) nor

d(P,Q) is a strict estimator.

3.4. Random optimization

To maximize an objective function f(θ) for θ ∈ [θmin, θmax], a random op-165

timization algorithm usually works as follows [6]. Let θ(i) be the value of θ in

iteration i. First, θ is randomly initialized as θ(0). In each iteration, a tentative

θ̃ is sampled from a proposal function q(θ|θ(i)). If f(θ̃) > f(θ(i)), then θ̃ is ac-

cepted (i.e., θ(i+1) = θ̃), otherwise θ̃ is rejected (i.e., θ(i+1) = θ(i)). The proposal

function q plays a critical role in a random optimization algorithm. One of the170

simplest proposal functions is the uniform function. That is, θ̃ ∼ [θmin, θmax].

The cuckoo search algorithm [16] is a random optimization algorithm in-

spired by the breeding behaviour of cuckoo birds. To avoid the tedious work of

offspring breeding, a cuckoo lays its egg to replace the egg in the nest of a host

bird with the hope that the host could help breeding the offspring. The host will175

also lay new egg to replace discovered cuckoo egg. The cuckoo search algorithm

iteratively mimics the egg replacement. The egg corresponds to θ, the quality

of egg corresponds to the objective function f(θ). The egg laying of cuckoo

and host are modelled as sampling θ̃ from the Levy function and the uniform

function, respectively. In each iteration, the algorithm sequentially performs180

the egg laying of cuckoo and the host, and the egg replacement happens if the

quality of new egg is better than that of old egg. So far, we have described

the simplified algorithm with one cuckoo and one host bird. In practice, the

algorithm mimics the behaviour of a population of cuckoos and host birds.
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4. Proposed similarity estimator185

Let M be the model point set and D be the data point set involved in model

fitting. As discussed in Section 3.3, Hausdorff distance can be used to estimate

strict similarity between M and D. However, it is time-consuming to calculate

Hausdorff distance as it requires to calculate both EDM d(D,M) and EMD

d(M,D). Consequently, a similarity estimator for model fitting is usually based190

on either EDM or EMD. Most estimators are based on EDM. Our insight is that

EMD is more reliable than EDM if the data is imperfect. As shown in Eq. (5),

all the data points are involved in the max operator to calculate EDM d(D,M),

however, only the data points survived from the min operator are involved in

the max operator to calculate EMD d(M,D). In other words, the outliers in195

data have chances to contribute to EDM but have no chance to contribute to

EMD, making EMD more robust than EDM.

As shown in Fig. 2, EDM is unable to distinguish the good-fitting model

(Fig. 2a) from the over-fitting model (Fig. 2b) for the nearly perfect data. For

the imperfect data, EDM even prefers the over-fitting model (Fig. 2f) than the200

good-fitting model (Fig. 2e). It is worth noting that the over-fitting problem

is notorious in machine learning. For both of the data, EMD prefers the good-

fitting models (Figs. 2a and 2e) than the over-fitting models (Figs. 2b and

2f) and the under-fitting models (Figs. 2c and 2g). However, EMD is unable

to distinguish the good-fitting models from the incomplete-fitting models (Figs.205

2d and 2h). To address this problem, a regularization term should be used to

regularize EMD.

4.1. Full similarity

It is challenging to design a regularization term to regularize EMD. We

observe that, in real world, two models M ⊂ Rk and N ⊂ Rk are identical if210

and only if every point of N is in M (i.e., d(N,M) = 0) and the measure of

N is equal to the measure of M . That means the measure can be used as a

regularization term to estimate similarity. It is worth noting that different types
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(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 2. An illustration of EDM and EMD. Top row: the overlaps between a nearly perfect data

point set (blue dots) and different models (green curves). Bottom row: the overlaps between

an imperfect data point set (blue dots) and different models (green curves). The imperfect

data contains one outlier. From left to right: good-fitting model, over-fitting model, under-

fitting model, and incomplete-fitting model. The red arrow denotes EDM, while the black

arrow denotes EMD. The values of EDM or EMD are indicated by the lengths of the arrows.

A long arrow means a large error, i.e., a small similarity.

of models have different types of measures. For example, the measure of a curve

is its length, while the measure of a surface is its area.215

We hence propose a mean measure to represent the similarity between a

model M ⊂ Rk and a data point set D ⊂ Rk. Denoting the measure of M as

|M |, the mean measure r(·, ·) is defined as the ratio of |M | to EMD:

r(M,D) =
|M |

ε+ dλ(M,D)
, (6)

where λ > 0 is used to tune the weight of the measure and EMD, and ε is a

small positive number used to derive different similarities for the models with

different measures but the same EMD of 0. For example, as shown in Fig. 3,

both d(C1, C1) and d(C2, C1) are equal to 0. If ε is 0, then both r(C1, C1) and

r(C2, C1) are infinite despite C1 is more similar to C1 than C2. In practice,220

when ε is sufficiently small, the mean measure can ensure that a model is most

similar to itself than any other models.

We now prove that the mean measure is a strict estimator in some 1-
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(a) C1 (b) C2 (c) C3 (d) C1 ∪C2 ∪C3

Fig. 3. An illustration of similarity. (a) Curve C1, (b) Curve C2, (c) Curve C3, and (d) the

overlap between C1, C2 and C3. The overlapping part (black) shows that C2 is a part of C1

and C3.

dimensional case. We consider a 1-dimensional model M that consists of only

one continuous point set and has a positive finite measure, i.e., M = [x, y],−∞ <225

x < y < +∞. Let Mu ⊂ Pu be the universal set of such models.

Lemma: |N | ≤ |M |+ 2d(N,M), ∀N ∈Mu.

Proof. Let N = [z, t]. Note that, |M | = y − x and |N | = t − z. There are

six cases of relations of x, y, z and t: (1) x < z < t < y, (2) z ≤ x < t < y, (3)

z < t ≤ x < y, (4) z ≤ x < y ≤ t, (5) x < z < y ≤ t, and (6) x < y ≤ z < t.230

Cases 2 and 5 are similar. Cases 3 and 6 are similar. We only need to prove the

first four cases. For Case 1: From the case condition we have x < z and t < y, so

t+x < z+ y, so t− z < y−x, i.e., |N | < |M |. Meanwhile, it is easy to compute

that d(N,M) = 0 for this case. Therefore, |N | ≤ |M |+ 2d(N,M). For Cases 2

and 3: d(N,M) = x− z, |M |+ 2d(N,M)− |N | = y − x+ 2(x− z)− (t− z) =235

(y− t) + (x− z) > 0, proved. For Case 4: if t− y > x− z, then d(N,M) = t− y,

|M | + 2d(N,M) − |N | = y − x + 2(t − y) − (t − z) = (t − y) − (x − z) > 0. If

t−y ≤ x−z, then d(N,M) = x−z, |M |+2d(N,M)−|N | = (x−z)−(t−y) ≥ 0.

proved.

Theorem: Given a ε > 0, let M(ε)
u = {M |M ∈ Mu, |M | > 2ε}. When240

λ = 1, the mean measure (Eq. (6)) is a strict similarity estimator (Eq. (3))

for the model set M(ε)
u . That is, when λ = 1, for a ε > 0 , ∀M ∈ M(ε)

u ,∀N ∈

M(ε)
u \ {M}, r(N,M) < r(M,M).

Proof. ∀M ∈ M(ε)
u ,∀N ∈ M(ε)

u \ {M}, noting that |M | > 0 and |N | > 0,

(1) If d(N,M) = 0, then N ⊂ M , then |N | < |M |, so r(N,M) = (|N |/ε) <245

r(M,M) = (|M |/ε); (2) If d(N,M) > 0, then 2d(N,M)ε < d(N,M)|M | because
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2ε < |M |, then |M |ε + 2d(N,M)ε < |M |ε + d(N,M)|M |, so |N |ε < |M |(ε +

d(N,M)) according to the lemma, so |N |/(ε+d(N,M)) < |M |/ε, i.e., r(N,M) <

r(M,M).

As shown in Eq. (6), to maximize the mean measure similarity over a model250

set for a data point set, we first minimize the EMD (denominator) (e.g., Fig.

2d), and then maximize the measure |M | until it equals the measure of the

ground-truth model (e.g., Fig. 2a). After that, the model M has no chance to

become larger (i.e., |M | becomes larger). Because the similarity will become

smaller as EMD will inevitably be much larger if |M | is larger than the ground-255

truth measure (e.g., Fig. 2b).

Note that, the values of mean measure are comparable on the same data

point set, but are incomparable on different data point sets. That is, it does

not make sense to compare the mean measure values across different data point

sets. For example, as shown in Fig. 3, it is meaningless to compare r(C2, C2)260

and r(C2, C1), although r(C2, C2) = r(C2, C1). It is also worth noting that, the

data is unnecessary to have a geometric measure. That is, the data can be a

discrete point set (i.e., a point cloud). If the data D is discrete, then ε is trivial

because d(M,D) is always larger than 0 (e.g., Fig. 2).

4.2. Partial similarity265

Mean measure is defined as a full similarity estimator as it assumes that the

data is complete. However, if the data is incomplete, we have to calculate partial

similarity, which is challenging. Partial similarity is not straightforward and is

fundamentally different from full similarity. If two models have a common part,

then these two models are partially similar. As shown in Fig. 3, each pair of C1,270

C2 and C3 are partially similar. We expect that the partial similarity between

C1 and C2 is equal to the partial similarity between C2 and C2. Because the

common part between C1 and C2 is the same as the common part between C2

and C2.

Therefore, we propose a Weighted Mean Measure (WMM) to represent the

partial similarity between a geometric model M and a data point set D. We

13



divide M into c non-overlapping sub-models: M =
c
∪
i=1

Mi, and define WMM

as:

rw(M,D) =

c∑
i=1

wi |Mi|

ε+ dλw(M,D)
, (7)

where wi is the weight: wi = exp (−d(Mi, D)h), h is a non-negative weighting

factor. When h is 0, WMM becomes a full similarity estimator. dw(·, ·) is the

weighted mean error:

dw(M,D) =

c∑
i=1

wid(Mi, D)

c∑
i=1

wi

. (8)

By weighting, the sub-models of M far away from D have less contribution275

to the computation of WMM than those close sub-models. In other words, the

common part of M and D makes major contribution to WMM, making WMM

plausible to estimate partial similarity.

4.3. Computational complexity

The computational complexity of mean measure almost depends on that of280

EMD, as the measure of a model can be immediately obtained from the model

parameter. The computation of EMD consists of two steps. First, the model is

uniformly divided into sub-models, and the center points of the sub-models are

sampled (Section 5). Second, the nearest point is searched in the data for a point

sampled from the model. This is time-consuming if the data contains a large285

number of points. A common way to perform the nearest neighbour searching is

using a k-dimensional tree [71]. Let m be the number of points sampled from a

model M and n be the number of points of data D, the complexity to compute

the mean measure between M and D is about O(mlog(n)).

5. Proposed early rejection strategy290

In our PMF method, the optimization algorithm (Section 3.4) accepts a

proposed model with a larger similarity. However, it is time-consuming to accu-

rately compute a similarity, as many points have to be sampled from the model
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(a) (b) (c) (d) (e) (f)

Fig. 4. An illustration of early rejection. Left: Overlap between Curves C4 (green) and C5

(blue). Black dots represent the points sampled from C4. (a), (b) and (c) show that 4, 2 and

1 point(s) are sampled, respectively. Right: A square surface to illustrate the coarse-to-fine

model dividing. The dividing levels in (d), (e) and (f) are 0, 1 and 2, respectively. The black

dots represents the points sampled in the current level, and the white dots represents the

points sampled in previous levels.

to compute an accurate similarity. We observe that, it is sufficient to determine

the dissimilarity by sampling only one point from the model. As shown in the295

left part of Fig. 4, Curve C4 consists of one horizontal line segment, and Curve

C5 consists of two vertical line segments, these two curves are dissimilar. The

similarities computed by sampling one point (Fig. 4c) and four points (Fig.

4a) are the same and equal to the true similarity. However, if two points are

sampled (Fig. 4b), the computed similarity will be incorrect as it shows that C4300

and C5 are similar. It can be inferred that a small similarity between two point

sets means that these two point sets are dissimilar. However, a large similarity

between two point sets does not mean that these two point sets are really simi-

lar. In other words, a proposed model should be accepted carefully but rejected

boldly.305

Consequently, to reduce computational time, we propose a coarse-to-fine

model dividing strategy for similarity calculation to reject dissimilar models in

advance. We take a square surface for example (as shown in the right part of

Fig. 4), and the conclusions can be easily adapted to other types of geometric

models. Assuming that the length of the square surface is γ, given a predefined

minimal dividing resolution δmin, the maximum dividing level is:

ηmax = log2(γ/δmin + 1). (9)

At each level η, we uniformly divide the surface into 22η sub-surfaces, and sample
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Algorithm 1 The proposed PMF method with early rejection

input: a probabilistic program g with parameter θ, a data point set D, the

posterior function f(θ|D), a proposal function q, an iteration tolerance imax,

and a minimal model dividing resolution δmin.

output: a maximum a posteriori estimate of θ: θ∗.

Randomly initialize θ(0), θ∗ ← θ(0)

for i = 0 to imax do

Sample θ̃ ∼ q(θ|θ(i))

Compute ηmax of M θ̃
g according to δmin

for η = 0 to ηmax do

if fη(θ̃|D) > f(θ(i)|D) then θ(i+1) ← θ̃

else θ(i+1) ← θ(i), break

if f(θ(i+1)|D) > f(θ∗|D) then θ∗ ← θ(i+1)

return θ∗

only one point (center point) from each sub-surface to calculate EMD. The

similarity is then calculated to decide whether to accept or reject the proposed

surface. If it is accepted, then the surface is divided into more sub-surfaces and

more points are sampled at a higher level to obtain more accurate similarity.310

Otherwise, a new surface is proposed.

The pseudo code of our PMF method is presented in Algorithm 1, where

fη(·|·) denotes the posterior computed at dividing level η. Let δD be the reso-

lution of the data D: δD = min
p∈D

min
q∈D\{p}

‖p− q‖, the minimal model dividing

resolution δmin should be set at least two times smaller than δD to obtain ac-315

curate similarity.

6. Experiments

We implemented our method in MATLAB and conducted several experi-

ments including estimator comparison (Section 6.1), cylinder fitting (Section

6.2), character fitting (Section 6.3), and building fitting (Section 6.4). In all320
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Fig. 5. Model sets. (a) Model set M1, (b) Model set M2, (c) Model set M3, and (d) Model

set M4. Each of these 4 model sets has only one parameter θ ∈ [0, 2].

experiments, we set ε = 10−8. Unless stated, we use WMM with λ = 2, h = 0,

and set δmin to 0.3 times the resolution of the data.

6.1. Estimator comparison

We compare several estimators with our WMM estimator by fitting 4 pro-

cedural models (Fig. 5) to 4 data point sets (Fig. 6). Model Mθ
1 ∈ M1 is a325

ring-like surface between an outer square and an inner square. The outer and

inner squares share the same center. The length of the outer and inner squares

are 4 and 2θ, respectively. Models Mθ
2 ∈ M2, Mθ

3 ∈ M3 and Mθ
4 ∈ M4 are

0.75, 0.5 and 0.25 part of Mθ
1 , respectively. As shown in Fig. 6, for i = 1 to

4, the ground-truth model of Di is Mθ=1
i . In this paper, we refer to the target330

model of a data point set as the model which is partially similar to the ground-

truth model. Therefore, for each data point set in Fig. 6, there is a target model

in each model set (as shown in Fig. 5). That is, for i = 1 to 4 and j = 1 to 4,

the target model of Di in Mj is Mθ=1
j .

The estimators used for comparison include negative Hausdorff distance (-335

HD), negative EDM (-EDM), negative voxel difference (-VD), and inlier number

(IN). -VD is used in PMF methods [6, 8, 4, 9], while IN is the foundation of

many classical model fitting methods such as RANSAC based methods [32, 34,

37, 40, 33].

The comparison results of fitting the models (Fig. 5) to the data point sets340

(Fig. 6) are shown in Fig. 7. In these 16 experiments, we set h = 5 for WMM

and set the resolution for -VD calculation to 0.04. Since the target models of
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(a) D1 (b) D2 (c) D3 (d) D4

Fig. 6. Data point sets. From left to right: Point sets D1, D2, D3 and D4. For i = 1 to 4, Di

is a point cloud uniformly sampled from Model Mθ=1
i with 0.02 resolution. D1, D2, D3 and

D4 consist of 12288, 9216, 6144 and 3072 points, respectively.

the data are models with θ = 1, it is expected that the models with θ = 1 have

the largest similarities. As shown in Fig. 7, our WMM is the only estimator to

achieve this goal for all experiments. -HD is successful for full fitting (Figs. 7a,345

7f, 7k and 7p), but failed for partial fitting except Fig. 7g. IN fails to distinguish

the target models from models with θ < 1 for all experiments except Fig. 7k.

The computational time of these 16 experiments for -HD, -VD, -EDM, IN, and

WMM are 94.2, 1.34, 21.8, 0.0949, and 74 seconds, respectively. Our WMM is

faster than -HD.350

It is worth noting that -HD, -EDM and WMM prefer to sample points from

model with a smaller resolution to obtain more accurate similarity. However,

-VD produces worse results with a smaller resolution for a discrete point set.

Fine voxelization of a discrete data produces more empty voxels. Therefore, an

empty model (e.g. Mθ=2
1 ) is preferred, as shown by the example in Fig. 8a.355

This indicates that voxelization is unsuitable for fine fitting of point clouds.

It is interesting to find that Fig. 7c is similar to Fig. 7d. Actually, the

original similarities before normalization are different. As shown in Table 2, the

WMM similarities are comparable across different model sets for the same data.

It can be seen from Table 2 and Fig. 7 that, a model is most similar to itself360

than any other models using WMM. Finally, we take the experiment of fitting

Mθ
1 to D2 as an example to evaluate the effect of weighting factor h. As shown

in Fig. 8b, WMM is very stable with respect to different values of h.
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Fig. 7. Comparative results achieved by different estimators. From left to right: the results

of fitting Models Mθ
1 , Mθ

2 , Mθ
3 and Mθ

4 to the data point sets. From top to bottom: the

results of fitting the models to Data D1, D2, D3 and D4. The vertical axis sn(·, ·) denotes

the normalized similarity. We uniformly normalize the similarities into a range of [0, 1]. The

legend for these figures is presented in (a). The diagonal figures represent the results of full

fitting. The figures below diagonal, above diagonal represent the results of partial fitting on

the incomplete data, partial fitting on the data with pseudo-outliers, respectively.

6.2. Cylinder fitting

In this section, we investigate the effect of our early rejection strategy by365

fitting a cylinder model M5 to data point sets D5, D6, and D7 (Fig. 9). D5
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Fig. 8. Parameter sensitivity. (a) -VD similarities of fitting Mθ
1 to D1 with resolutions 0.2,

0.08, 0.02, 0.01 and 0.005. (b) WMM similarities of fitting Mθ
1 to D2 with weighting factor

h=0.5, 2, 4, 8 and 16.

Table 2: WMM similarities between the target models and data point sets. The diagonal

elements represent the similarities between the ground-truth models and the data. It is shown

that, for the same data, the similarity between the ground-truth model and the data is the

largest among all similarities.

Model Mθ=1
1 Mθ=1

2 Mθ=1
3 Mθ=1

4

Data

D1 83840.8 62861.7 41920.4 20941.3

D2 21987.3 62861.7 41920.4 20941.3

D3 8086.26 8322.63 41920.4 20941.3

D4 2486.52 2494.83 2642.86 20941.3

and D6 contain gross-outliers, while D7 contains pseudo-outliers. The cylinder

modelM5 has 7 parameters (3 for location, 1 for radius, 1 for height, and 2 for

start and end angles). Some sample models of M5 are shown in the top row of

Fig. 10.370

For each data, we use the cuckoo search (CS) [16] and Metropolis-Hastings

(MH) [6] algorithms with or without early rejection (ER) to perform cylinder

fitting. The evolutions of similarity during fitting are shown in Fig. 11, where

each line represents the mean similarity values and the patch around each line

represents the standard deviations. The mean values and standard deviations375
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Fig. 9. Data point sets. From left to right: Data D5, D6, and D7. D5 and D6 are generated by

adding low-level and high-level gross outliers to a noise-free data, respectively. The noise-free

data contains 2048 points sampled from a cylinder surface with resolution 0.2. D5 consists

of 4096 points, while D6 consists of 10240 points. D7 has 14778 points and is generated by

downsampling a laser scanning point cloud [72] with a resolution of 0.2.

are computed from 60 times of fitting. The fitting is performed three hours every

time. Some fitted models are shown in Fig. 10. Figure 11 shows that, with our

ER strategy, both CS and MH can be accelerated by about 3 times. As shown

in Figs. 11a and 11b, the target similarities still remain the largest similarities

after a long evolution time. This indicates that our method is robust to gross380

outliers. Figure 10f shows that our method is also robust to pseudo-outliers.

It is also shown that, CS is more efficient to handle pseudo-outliers (Fig. 11c),

whereas MH is more efficient to deal with massive gross-outliers (Fig. 11b).

6.3. Character fitting

We also applied our method to perform few-shot recognition on noisy vari-385

ants of the MNIST dataset [73, 74], which contain images of size 28 × 28 for

digits 0 to 9. For convenience, we resized the images to 65× 65 and then zero-

paded them to 105×105. Figure 12 illustrates the process of 2-shot recognition.

We extract a character model (the second left column in Fig. 12) from a given

training image (the leftmost column in Fig. 12) based on the bottom-up method390

proposed in [4]. The bottom-up method is originally used to handle images with
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Fig. 10. Fitted cylinder models (red), the target models (green), and the data point sets

(other colors, Fig. 9). Top row: randomly initialized models. Bottom row: final fitted models

(Fig. 11). From left to right: fitting the cylinder to D5, D6, and D7. Note that, we do not

show the target model of the real data D7 as it is unknown.

size 105×105. The extracted model consists of several strokes. Each stroke has

14 parameters (2 for location, 10 for shape, 1 for scale, and 1 for rotation). The

model also has 6 global parameters (1 for rotation, 2 for affine, 1 for width, and

2 for location). Let the parameters of the model be θt, we define a range around395

θt to define a probabilistic program corresponding to the training image (Table

3). Some models generated by the probabilistic program are shown in the right

columns of Fig. 12.

We then perform PMF for each probabilistic program to find the ground-

truth model of a test image. That is, the test image is classified to the class of400

the training image with the highest fitting similarity. Note that, the similarity
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(a) (b) (c)

Fig. 11. Cylinder fitting results. (a), (b) and (c) are the results of fitting the cylinder

model M5 to D5, D6 and D7 (Fig. 9), respectively. Each line represents average values

of the similarities, while the patch around each line represents the standard deviation of the

similarities. CS-ER, CS, MH-ER, MH, and Target denote CS with ER, CS without ER,

MH with ER, MH without ER, and the similarity of the target model, respectively. These

experiments were conducted on a machine with an Intel Xeon E5-2650 v4 2.20GHz CPU.

Fig. 12. Generation of character models for Class ‘2’. The leftmost column: training images.

The second column: character models extracted from the training images. The other columns:

models randomly generated by the probabilistic program corresponding to the training images.

Top row: the first training. Bottom row: the second training.

Table 3: Parameter ranges of the probabilistic character programs. The ranges of the shapes

for 1-shot and 5-shot recognition are defined as [θt−5, θt+5] and [θt−2.5, θt+2.5], respectively.

θ rotation

(global)

affine width location

(global)

location scale rotation

θmin θt − 90 1/1.5 0 θt − 60 θt − 2.5 θt/1.1 θt − 20

θmax θt + 90 1.5 6 θt + 60 θt + 2.5 1.1θt θt + 20
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is computed with the binarization of images. Table 4 shows the classification

results achieved on the noisy MNIST data [74]. The noisy data are corrupted by

six types of noise with three levels of intensity. We compare our PMF method

with the recursive cortical network (RCN) [74] for the tasks of 1-shot and 5-shot405

recognition. RCN is the state-of-the-art few-shot recognition method. For both

PMF and RCN, we sequentially select the training and testing images from

the data to perform several runs of recognition. Specifically, in each run, we

select n training images and 1 test image from each class to perform n-shot

recognition. The numbers of runs for 1-shot and 5-shot recognition are 50 and410

20, respectively.

In these character fitting experiments, we set δmin to 0.5 times the resolution

of the data. Specially, for the data corrupted by grid and clutter, we set λ = 5.

Let n be the number of parameters of a probabilistic program, we also set

the iteration tolerance to 1000n and 500n for 1-shot and 5-shot recognition,415

respectively. As shown in Table 4, our method outperforms RCN on the data

corrupted by grid, clutter, and deletion in all cases. In particular, for the data

corrupted by the level-2 grid, our PMF-5 method outperforms RCN-5 by 35

percent. Our method also outperforms RCN on the data with background noise

in most cases. For the data with patches, our method is only slightly worse than420

RCN.

However, for the data with border, the performance of our method decreases

drastically. In these cases, our method recognizes most images as ‘7’. That

is, our method finds a big ‘7’ located on the border of the image. To some

extent, this is reasonable as the border can be seen to contain a character ‘7’.425

Nevertheless, a potential solution to address this problem is to impose some

more specific prior on the objective function (Eq. (1)), such as [4].

6.4. Building fitting

We also conducted experiments to fit building facades on laser scanning

3-dimensional point clouds. The results of fitting a facade model M8 to a 3-430

dimensional point cloud D11 (Fig. 13b) are shown in Figs. 13 and 14. M8
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Table 4: Classification accuracies achieved on the noisy MNIST data. bg-noise denotes back-

ground noise. RCN-1 denotes RCN with 1 training image. The pool size, perturbation factor

for RCN-1 and RCN-5 are set to 57, 1.0 and 45, 1.0, respectively. These settings are reported

to achieve the best performance for RCN-1 and RCN-5 on the noise-free MNIST data [74].

In this paper, for the noise-free MNIST data, RCN-1, PMF-1, RCN-5, and PMF-5 achieve

accuracies of 0.722, 0.604, 0.9, and 0.83, respectively.

Noise Type bg-noise border patches grid clutter deletion

Noise Level 1

RCN-1 0.628 0.524 0.63 0.298 0.338 0.566

PMF-1 0.63 0.23 0.608 0.426 0.428 0.588

RCN-5 0.735 0.82 0.815 0.315 0.495 0.73

PMF-5 0.825 0.27 0.835 0.57 0.55 0.735

Noise Level 2

RCN-1 0.548 0.426 0.64 0.22 0.302 0.498

PMF-1 0.616 0.142 0.608 0.47 0.408 0.556

RCN-5 0.695 0.735 0.81 0.3 0.385 0.65

PMF-5 0.875 0.135 0.805 0.65 0.52 0.78

Noise Level 3

RCN-1 0.466 0.344 0.606 0.202 0.282 0.478

PMF-1 0.43 0.146 0.6 0.312 0.374 0.556

RCN-5 0.575 0.645 0.795 0.23 0.34 0.575

PMF-5 0.605 0.135 0.795 0.385 0.535 0.745

has 18 parameters (1 for rotation, 3 for location, 2 for extrusion, and 12 for

size). We use the CGA (Computer Generated Architecture) shape grammar

[59] to manually create the probabilistic program to define M8. The depth of

the derivation tree [6] of the probabilistic program is 5. That is, each model435
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(a) (b) (c)

Fig. 13. Fitted model. (a) An original point cloud consisting of 385793 points. (b) A point

cloud D11 consisting of 23266 points. D11 is generated by downsampling the original point

cloud (a) with a resolution of 0.2. (c) Final fitted model (after 55080 iterations) for fitting

M8 to D11.

Fig. 14. Model evolution of fitting M8 to D11. From left to right: fitted models (color) at

different iterations: 0, 360, 1240, 9200, and 39360.

in M8 has a 5-level hierarchical structure. Figure 13c shows the terminal rules

of the final model. The colors of the terminal rules represent the third level

structure of the final model. That is, the terminal rules in the same color are

derived from the same non-terminal rule at the third level of the derivation tree.

The first, second, third, fourth, and fifth levels of structures are shown in Fig.440

14 from left to right.

7. Conclusions

In this paper, we investigated the robust PMF problem. We proposed a

novel estimator for PMF to handle imperfect data. The optimization problem

in PMF was formulated as a Bayesian inference problem and was addressed by445

the cuckoo search algorithm. We also proposed a novel technique to accelerate
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the inference process. Our PMF method has been tested on complex geometric

models and imperfect data. Experimental results show that, our estimator is

robust to gross-outliers and a wide variety of pseudo-outliers. It is also shown

that, our method can be accelerated by several times.450

Our estimator is highly robust but extremely easy for understanding and

implementation. It consists of only two natural concepts: the length (or area)

of the model, and the error from model to data. It has only one parameter (λ in

Eq. (6)) for complete data, and has only two parameters (λ and h in Eq. (7))

for incomplete data. Note that, the dividing parameter δmim is trivial in terms455

of effectiveness as it should be set as small as possible.

We believe that our work takes a step towards making PMF more useful.

However, several issues still remain open. First, all the point sets involved in

the experimental part of this paper are either 2-dimensional or 3-dimensional.

Although our estimator is theoretically not limited to low-dimensional point460

sets, it is time-consuming to apply our estimator on high-dimensional point

sets. Second, it is time-consuming to perform PMF if the procedural model has

a large number of parameters. Advanced techniques are expected to address

these issues.
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