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ABSTRACT 
 
LIDAR (Light Detection and Ranging) is an especially 
effective tool for acquiring geo-referenced point clouds of 
urban site. Accurate extraction of elevated features such as 
building rooftops is vitally important in various applications. 
However, it is still challenging to determine an accurate 
rooftop contour from the irregularly distributed LIDAR 
point clouds. In this paper an efficient LIDAR segmentation 
method is presented in order to achieve automated rooftop 
extraction. First, we apply a voxel-based upward growing 
algorithm that filters out the ground points from the raw 
point cloud scenes. Second, we employ a Euclidean based 
clustering method on non-ground points by making use of 
nearest neighbors. Then we introduce RANSAC (RANdom 
SAmple Consensus) technique to estimate primitive planes 
for fitting rooftop facets. Finally, we use concave hull and L0 
regularization to determine the rooftop contour. Accurate 
experimental results demonstrate the validity of our 
segmentation method for rooftop extraction. 
 

Index Terms—LIDAR, Segmentation, Point Cloud, 
Building, Rooftop Extraction. 
 

1. INTRODUCTION 
 
Current LIDAR systems can acquire high spatial resolution 
point cloud data rapidly with an unprecedented level of 
details of urban environments. LIDAR point cloud is a 
significant information for numerous applications, including 
urban planning, topographic mapping etc. [1], [2]. Elevated 

features identification is often required in such applications. 
Extraction of such features as building rooftops is a main 
process in urban planning [3]. Hence, many segmentation 
approaches have been developed by several researchers. 
These approaches can be categorized into three main area: 
model-based fitting [4], [5], morphological filtering [6], [7], 
and supervised learning method [8].  

The model-based fitting approach has been employed 
to segment the building rooftop by making use of the rooftop 
topology structure. Reference [4] determines the clusters 
with fuzzy k-means algorithm for roof segments. It updates 
the topologic weights of each cluster center iteratively, and 
then assigns each data point to its closest center. Reference 
[5] employs a region-growing algorithm to extract roof 
planes from non-ground LIDAR point cloud. It presents a 
rule-based method as well to remove false planes.  

In case of knowing the location of a building 
beforehand, the Morphological filtering approach can be 
employed. Reference [6] performs morphological operations 
with increased window sizes to separate non-ground objects 
from terrain features. Reference [7] determines multiple roof 
segments simultaneously with the method of multiphase and 
multichannel level set. It separates the coplanar roof 
segments from parallel roof segments by analyzing their 
connectivity and homogeneity.  

Research on supervised learning method takes 
advantage of specified training features to achieve high 
precision segmentation results. Reference [8] adapts SVM 
(Support Vector Machine) and local descriptors to classify 
the non-ground point clouds with geometrical and contextual 
features, respectively.  
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In this paper, we focus on utilizing a set of algorithms 
to generate more accurate results for fully-automated rooftop 
extraction. The remainder of this paper is organized as 
follows. Section 2 presents the overall approach in detail. 
Section 3 provides and analyzes the experimental results to 
demonstrate the effectiveness of the proposed method, and 
Section 4 draws a conclusion.  
 

2. METHOD 
 
Fig. 1 shows the flowchart of the proposed method. The 
method consists of five major steps. Firstly, we separate the 
ground points from the non-ground points (also called as 
object points) via a voxel-based upward growing algorithm. 
Only the non-ground points are preserved since the method 
focuses on building rooftop extraction. Secondly, we divide 
the object points into different clusters using Euclidean 
distance as the metric. Thirdly, we estimate the rooftop 
facets by utilizing RANSAC, with the assumption that the 
geometric model is planar. Then we discriminate the spatial 
relation between the facets, upon which the rooftop structure 
can be derived. Finally the procedure branches into one of 
two results; we either extract the contour for a flat rooftop or 
a shed rooftop, or we extract intersection edge, rooftop 
contour and surfaces for a gabled rooftop or a complicated 
structured rooftop.  
 
2.1. Ground filtering 
 
Ground filtering is a preparative step for classifying the non-
ground points into different objects. Therefore, a variety of 
approaches are implemented in literature to split the point 
cloud into ground points and object points [9] [10]. In our 
proposed method, we implement a voxel-based upward 
growing algorithm to remove the ground points [11]. At first, 
the entire scene is divided into a series of local points block 
vertically on the XY plane to reduce the time and space 
complexity. Then each block is subdivided into spatially 
continuous voxels according to the octree index structure. 
After that, calculate the global elevation and local elevation 
in the block for each voxel. The voxel elevation along with 
the elevation threshold is used to filter out the ground points. 
This voxel-based ground filtering algorithm is chosen due to 
its speediness, effective process of scenes with strong 
fluctuations, and its ability to retain the integrality of object 
points.  
 
2.2. Euclidean based clustering 
 
The filtered object points are still irregularly distributed. It’s 
rather difficult to extract accurate rooftop facets from the 
point clouds directly. The points need to be grouped into 
clusters in terms of the spatial context. Thus we choose 
Euclidean distance clustering method to group points into 
different clusters. This step begins with changing the 

coordinates of each point into the offset value, for the sake 
of decreasing the computational complexity. A Kd-tree repr- 
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Fig. 1. The flowchart of the proposed method. 
 
esentation is created for each point pi in the point cloud. The 
neighbors 

i
kP  of point pi are searched with a radius 

threshold based on Euclidean distance, and then assign 
i

kP  
to the cluster including pi. The algorithm terminates after 
each pi has been processed.  
 
2.3. Facets estimation 
 
Prior to this point, the input for processing procedure is data 
points. Now processing each individual cluster is the major 
task. We apply RANSAC to fit the initial rooftop facets 
from the individual point sets suppose that the rooftop facets 
are planar. Start with selecting a random point set and 
apriori inliers to fit a plane, then test the remaining data and 
determine the points belonging to this plane based on a pre-
specified distance threshold. Afterwards the inliers are 
estimated from the data iteratively. In each iteration the new 
result replaces the last one if it outperforms the old one. The 
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point set of the saved plane are selected as a rooftop facet 
eventually. The fitting results are robust to the input data 
which even contain significant outliers thanks to the plane 
parameters that is estimated only from the inliers. 
 
2.4. Spatial relation identification of facets 
 
Once the rooftop facets are extracted, we identify the spatial 
relation of all facets so as to define the rooftop outline 
appropriately. Firstly we determine whether the rooftop facet 
is horizontal according to its normal vector. Next for those 
inclined facets, we analyze the spatial relation among them. 
We denote each facet by Ωi and its corresponding point sets 
by Pi. For a given ΩA, calculate the distance dA between 

point pA∈PA and any facet ΩB in the point cloud with a kd-
tree. The process is also repeated for all points in PB with ΩA 
to generate dB. We seek the minimum value in all dA and dB, 
respectively. Facets are considered adjacent if the values are 
both smaller than a preset threshold. Furthermore, two 
adjacent facets are considered intersecting if the angle 
difference of their normal vectors is larger than a certain 
threshold.  
 
2.5. Rooftop contour extraction 
 
The foregoing procedure collects a set of rooftop facets with 
rough outline, we now come to extract much more accurate 
rooftop contour . A manifold approaches are used to extract 
the contour relying on the spatial structure of the rooftop; 
concave hull, L0 regularization and bounding rectangle. The 
two former are adopted for estimating the contour of a flat or 
shed rooftop, where the facet is a horizontal plane or an 
inclined one. Note that the Z axis needs to be rotated in line 
with the normal vector of the plane firstly. Bounding 
rectangle is implemented when a gabled or complicated 
structured rooftop is encountered. 
 
2.5.1. Concave hull 
In this step, we apply concave hull to extract the contour of 
all inliers estimated by RANSAC. A set of inliner indices are 
projected into individual plane. Herein, the issue domain is 
transformed from 3D to 2D. Create the voronoi 
neighborhood for each point on the plane, then define 
voronoi cells for the concave hull segments. The concave 
hull vertices then form the final rooftop surface. The voroni 
neighborhood doesn’t specify the number of points to be 
selected and completely relies on the geometry of datasets. 
Hence, we can extract rooftop in arbitrary-shape. 
 
2.5.2 L0 regularization 
In practice, a low point density will result in large errors and 
uncertainties to calculate the rooftop surface. To resolve it, 
we propose an optimization method relating in spirit to L0 
gradient minimization [12] for further processing.  

The common rooftop shapes are polygons consisting of  
rectilinear with right angles in most urban areas. Take this 
into account, we use regularized polygon to refine the 
rooftop contour. In the first place, we ortho-project the 
points within a rooftop facet onto a 2D plane. Then we need 
to determine the principal orientation of the projected 
rooftop, which is the L0 norm relate to our problem. Attach 
the origin to the projected centroid to get a straight line l. 
Rotate the coordinate system to ensure the x-axis is in line 
with l. Next translate x-axis to the parallel line which pass 
through the lowest point (xi, ymin). Divide the horizontal axis 
into unique spaces. Search the max ordinate ymax in each 
space to form a rectangle with x-axis. Then rotate the point 
set to find out the minimum of all rectangular area with a 
unique angle in the range [0, 2π). Note that the x-axis always 
pass through (xi, ymin). The result x-axis is the L0 norm we’re 
looking for. If the divergence of ymax between two adjacent 
rectangles Rec1 and Rec2 is small enough, Rec1 and Rec2 are 
merged. Otherwise, we regularize the contour.  
 
2.5.3. Bounding rectangle 
The intersection line between inclined planes is defined as a 
parametrized line: 

lt = o + tp, t∈R, 
where o is the origin, and p is a union normal vector. Then 
we seek the minimum and maximum of t specifying two 
points pt1 and pt2 on lt. Define four straight lines (l1, l2, l3, l4) 
which not only pass through pt1 and pt2 but also is 
perpendicular to lt. Next, compute the distances from the 
points that lie on (l1, l2, l3, l4) to lt. The farthest four points 
are taken as the four vertices of the bounding rectangle. 
Finally, we refine the contour with the two former 
approaches. 
 

3. RESULTS AND DISCUSSION 
 
The raw LIDAR datasets selected in this research were 
collected from the City of Longyan, China. The number of 
points ranges from 104,432 to 393,651, and the point 
density is roughly 1.3 pts/m2. The whole process was 
implemented in C++. All experiments were performed on 
Windows 7 operating system. Moreover, the developed 
segmentation was operated with a fit collection of 
predetermined  thresholds. Take Euclidean based clustering 
for example, the minimum distance threshold is 2 meters 
between two clusters in Euclidean space, and the minimum 
cluster size is 20 points. Fig. 2 shows a raw LIDAR dataset 
along with the result after ground removal. The effect of 
object points clustering based on the Euclidean distance is 
shown in Fig. 3. Then the rooftop facets were obtained by 
utilizing RANSAC. As illustrated in Fig. 4, extraction of 
rooftop contour with L0 regularization achieves much higher 
precision in comparison with concave hull extraction. 
Furthermore, the extracted rooftops and the object points 
were merged together for visual observation as shown in Fig. 
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5(c). The merged results demonstrate that the proposed 
segmentation method achieves promising performance in 
extracting rooftop automatically from LIDAR point clouds. 

  
(a)                                        (b) 

 
Fig. 2. Ground filtering. (a) Raw point clouds. 

 (b) After ground removal. 
 

 
 

Fig. 3. Object points clustering. 
 

           
(a)                             (b) 

 
Fig. 4. Rooftop contour extraction. (a) Before L0 

regularization. (b) After L0 regularization. 
 

   
             (a)                          (b)                           (c)    
 

Fig. 5. Final results. (a) Object points.  (b) The extracted 
rooftops. (c) Merged results. 

 
4. CONCLUSION 

 
In this paper, we have presented a highly effective 
segmentation method for extracting building rooftop 
automatically from LIDAR point cloud. The ground points 
were filtered out from the raw point clouds effectively with a 
voxel-based upward growing algorithm. The developed 
Euclidean distance-based method was applied to cluster the 
non-ground points. Then the RANSAC algorithm was used 
for estimating building rooftop facets efficiently. In addition, 
basing on the rooftop structure, the rooftop contours were 
accurately extracted with concave hull and L0 regularization. 
The segmentation results demonstrated the efficiency of our 
proposed algorithm for building rooftop extraction. 
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